Liikumine

Numbriliste meetodite lubamatus Lähimõju Printsiibis

Ferma’teoreemi – kui “kinnistunud seose-reegli” rakendamisel – on mõistetav “numbriline meetod” (näiteks: piirväärtusliku mõiste sissetoomisega arutlusse).
Mistahes (praegu kehtivasse!?) liikumisteisendusse – me ei saa, ei oska ega tohigi – rakendada “määratud/determineeritud väärtusi”?! See on ILMNE Lorentz-teisenduste rakendamisel, milles kehtivad “piirangud Signaalile (valguse kiirusele c)” –
sest teisendus sisaldab NIMETAJAS tegurit k = (+;-)[1 – (v/c)^2]^(1/2).
Kaugmõju Printsiip ON LUBATUD Galilei teisendustes (x’= x – vt) ning selle teisenduse funktsioonides:
f(ct) = ct(1 – (v/c); ja selle pöördteisenduses g(ct) = ct/(1 – (v/c). Viimane iseloomustabki MUDELIT:
– “Eukleidilisest sündmuste geomeetriast” versus “Minkowski Geomeetria”.
Matemaatiline reegel:
– KEHTESTATUD OLEKUSEOS – KEHTIB KOHESELT KOGU AEGRUUMIS – ega vaja “leviku kiiruse arvutamist”.
Järeldus: “Have Gravitational Waves” on kas vastuolus (kehtiva) relatiivsusteooriaga või püüab ESITADA PIDEVAID AEGRUUMI OLEKUMUUTUSI – (tõenäosuslike) laineteooria võrranditega – lähindatud “numbrilise meetodiga” (kui piirväärtuslike mõistetega)?

PS. LUBAN: Kasutada sellist meetodit (ka) “minu esitatud” Liikumisteisendustes! //Tõnu:veebiruum//

Lisa kommentaar

Kommenteerimiseks palun logi sisse, kasutades üht neist võimalustest:

WordPress.com Logo

Sa kommenteerid kasutades oma WordPress.com kontot. Logi välja /  Muuda )

Twitter picture

Sa kommenteerid kasutades oma Twitter kontot. Logi välja /  Muuda )

Facebook photo

Sa kommenteerid kasutades oma Facebook kontot. Logi välja /  Muuda )

Connecting to %s